Rates of convergence of Gaussian quadrature for singular integrands

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rates of Convergence of Gauss, Lobatto, and Radau Integration Rules for Singular Integrands

Rates of convergence (or divergence) are obtained in the application of Gauss, Lobatto, and Radau integration rules to functions with an algebraic or logarithmic singularity inside, or at an endpoint of, the interval of integration. A typical result is the following: For a generalized Jacobi weight function on [-1,1], the error in applying an «-point rule to f(x) = \x -y\~* isO(n~2 + 2i), if y ...

متن کامل

Gaussian rational quadrature formulas for ill-scaled integrands

A flexible treatment of Gaussian quadrature formulas based on rational functions is given to evaluate the integral ∫ I f(x)W (x)dx, when f is meromorphic in a neighborhood V of the interval I and W (x) is an ill-scaled weight function. Some numerical tests illustrate the power of this approach in comparison with Gautschi’s method.

متن کامل

Radial quadrature for multiexponential integrands

We introduce a Gaussian quadrature, based on the polynomials that are orthogonal with respect to the weight function ln(2)x on the interval [0, 1], which is suitable for the evaluation of radial integrals. The quadrature is exact if the non-Jacobian part of the integrand is a linear combination of a geometric sequence of exponential functions. We find that the new scheme is a useful alternative...

متن کامل

Adaptive Quadrature for Sharply Spiked Integrands

A new adaptive quadrature algorithm that places a greater emphasis on cost reduction while still maintaining an acceptable accuracy is demonstrated. The different needs of science and engineering applications are highlighted as the existing algorithms are shown to be inadequate. The performance of the new algorithm is compared with the well known adaptive Simpson, Gauss-Lobatto and GaussKronrod...

متن کامل

Gaussian quadratures for oscillatory integrands

We consider a Gaussian type quadrature rule for some classes of integrands involving highly oscillatory functions of the form f (x) = f 1 (x) sin ζ x + f 2 (x) cos ζ x, where f 1 (x) and f 2 (x) are smooth, ζ ∈ R. We find weights σ ν and nodes x ν , ν = 1, 2,. .. , n, in a quadrature formula of the form 1 −1 f (x) dx ≈ n ν=1 σ ν f (x ν) such that it is exact for all polynomials f 1 (x) and f 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1984

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1984-0744932-2